Publications by authors named "V G Villarrubia"

The authors describe peroxisome proliferator-activated receptor (PPAR) transcription factors as connectors between the enzymatic mechanisms of the epidermal barrier and the abnormal immune and inflammatory responses that characterize atopic dermatitis and psoriasis. Also described is a new connection between lipid metabolism and the epidermal barrier. A suggestion that emerges is that atopic dermatitis and psoriasis share at least 2 pathogenic mechanisms-namely, deficient expression of PPAR-#a and impaired production of interleukin-10 and interferon-γ-in spite of differences in causes and manifestations.

View Article and Find Full Text PDF

The authors describe peroxisome proliferator-activated receptor (PPAR) transcription factors as connectors between the enzymatic mechanisms of the epidermal barrier and the abnormal immune and inflammatory responses that characterize atopic dermatitis and psoriasis. Also described is a new connection between lipid metabolism and the epidermal barrier. A suggestion that emerges is that atopic dermatitis and psoriasis share at least 2 pathogenic mechanisms-namely, deficient expression of PPAR-#a and impaired production of interleukin-10 and interferon-γ-in spite of differences in causes and manifestations.

View Article and Find Full Text PDF

The discrepancies among data reported by using olive oil (OO) in humans appear to be due to the great differences between the different OO used. Based on structure/function relationships we have chemically optimized an OO through the rational mixture ("coupage") of several Spanish extra virgin olive oils (methodology "oHo"). Patients with chronic kidney disease (CKD) develop a progressive picture of malnutrition and inflammation that lead them to an elevated risk of cardiovascular disease.

View Article and Find Full Text PDF

Transforming growth factor-beta2 (TGF-beta2) is known to suppress the immune response to cancer cells and plays a pivotal role in tumor progression by regulating key mechanisms including proliferation, metastasis, and angiogenesis. For targeted protein suppression the TGF-beta2-specific antisense oligodeoxynucleotide AP 12009 was developed. In vitro experiments have been performed to prove specificity and efficacy of the TGF-beta2 inhibitor AP 12009 employing patient-derived malignant glioma cells as well as peripheral blood mononuclear cells (PBMCs) from patients.

View Article and Find Full Text PDF