Publications by authors named "V G Vassiliades"

A central question in artificial intelligence is how to design agents capable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mechanisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call "switch neuron".

View Article and Find Full Text PDF

We consider the problem of designing local reinforcement learning rules for artificial neural network (ANN) controllers. Motivated by the universal approximation properties of ANNs, we adopt an ANN representation for the learning rules, which are optimized using evolutionary algorithms. We evaluate the ANN rules in partially observable versions of four tasks: the mountain car, the acrobot, the cart pole balancing, and the nonstationary mountain car.

View Article and Find Full Text PDF

Filtering of Protein Secondary Structure Prediction (PSSP) aims to provide physicochemically realistic results, while it usually improves the predictive performance. We performed a comparative study on this challenging problem, utilizing both machine learning techniques and empirical rules and we found that combinations of the two lead to the highest improvement.

View Article and Find Full Text PDF

This paper investigates multiagent reinforcement learning (MARL) in a general-sum game where the payoffs' structure is such that the agents are required to exploit each other in a way that benefits all agents. The contradictory nature of these games makes their study in multiagent systems quite challenging. In particular, we investigate MARL with spiking and nonspiking agents in the Iterated Prisoner's Dilemma by exploring the conditions required to enhance its cooperative outcome.

View Article and Find Full Text PDF

The elevated moon usually appears smaller than the horizon moon of equal angular size. This is the moon illusion. Distance cues may enable the perceptual system to place the horizon moon at an effectively greater distance than the elevated moon, thus making it appear as larger.

View Article and Find Full Text PDF