Publications by authors named "V G Nikonorova"

Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications.

View Article and Find Full Text PDF
Article Synopsis
  • Surgical interventions in the head and neck can affect how ischemic changes occur in the brain, impacting both their nature and location.
  • The review focuses on comparing the timing of basic cellular and molecular processes involved in these changes.
  • Criteria for selecting animal models include oxidative stress in brain cells, blood-brain barrier issues, glial activation, neuroinflammation, changes in blood vessel growth, and the model's reproducibility.
View Article and Find Full Text PDF

Nanotoxicological studies using existing models of normal cells and animals often encounter a paradox: retention of nanoparticles in intracellular compartments for a long time is not accompanied by any significant toxicological effects. Can we expect that the revealed changes will be not harmful after translation to practice, outside of a sterile laboratory and ideally healthy organisms? Age-associated and pathological processes can affect target organs, metabolism, and detoxification in the mononuclear phagocyte system organs and change biodistribution routes, thus making the use of nanomaterial not safe. The potential solution to this issue can be testing the toxic properties of nanoparticles in animal models with chronic diseases.

View Article and Find Full Text PDF

This paper is the continuation of our previous work on the ability of biocomposites based on sol-gel alumina (boehmite) to promote skin recovery from burns and atrophic scars. The present study describes the increasing of the cytoplasma volume and the number of filopodias of HDF cells, which for the first time indicates their proliferation on the alumina itself and on alumina-based biocomposite. Studies in vivo confirm the efficiency of the composite in the treatment of atrophic scars.

View Article and Find Full Text PDF

The unique properties of magnetic iron oxide nanoparticles determined their widespread use in medical applications, the food industry, textile industry, which in turn led to environmental pollution. These factors determine the long-term nature of the effect of iron oxide nanoparticles on the body. However, studies in the field of chronic nanotoxicology of magnetic iron particles are insufficient and scattered.

View Article and Find Full Text PDF