Service model changes at the North Staffordshire Rehabilitation Centre (UK) included switching spasticity treatment from onabotulinumtoxinA (onaBoNT-A) to abobotulinumtoxinA (aboBoNT-A). This noninterventional, retrospective, longitudinal study (NCT04396704) describes the clinical and economic outcomes in toxin-naive adults with spasticity who received onaBoNT-A (Cohort 1; 2015-2017) or aboBoNT-A (Cohort 2; 2017-2019). Outcomes included Goal Attainment Scale T (GAS-T) score, treatment satisfaction, quality of life (QoL; EQ-5D visual analog scale [VAS] score), and treatment costs.
View Article and Find Full Text PDFDiverse drugs from many therapeutic classes exert cardiotoxic side effects by inducing torsades de pointes (TdP), a life threatening cardiac arrhythmia, which often results from drug interaction with HERG (human ether-a-go-go related gene) encoded K(+) channels, that generate an I(Kr) component of the delayed rectifier cardiac K(+) current. Men are known to be at a lower risk for drug-induced TdP than women suggesting a role of sex steroid hormones, androgens and estrogens, in modulation of drug sensitivity of cardiac K(+) channels, particularly those encoded by HERG. Here by using neuroleptic agents haloperidol, pimozide, and fluspirilene, all of which can induce TdP, and a steroid hormone-sensitive system Xenopus oocytes for HERG channels expression we show that testosterone is able to reduce HERG-blocking potency of neuroleptics.
View Article and Find Full Text PDFWe have investigated the effects of neuroleptic agents, haloperidol, pimozide and fluspirilen, that are used in clinics to treat psychiatric disorders, but reportedly have proarrhythmic side effects, on HERG-encoded K+ channels responsible for the rapid component of cardiac delayed rectifier K+ current, IKr. All three agents blocked HERG-directed IKr in Xenopus oocytes in a voltage-dependent manner. The extent of the blockade increased with depolarization correlating with channels activation consistent with open-channel blocking mechanism.
View Article and Find Full Text PDFSyntaxin, a membrane protein vital in triggering vesicle fusion, interacts with voltage-gated N- and P/Q-type Ca(2+) channels. This biochemical association is proposed to colocalize Ca(2+) channels and presynaptic release sites, thus supporting rapid and efficient initiation of neurotransmitter release. The syntaxin channel interaction may also support a novel signaling function, to modulate Ca(2+) channels according to the state of the associated release machinery (Bezprozvanny et al.
View Article and Find Full Text PDF