Publications by authors named "V G Debabov"

Inverted fatty acid β-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid β-oxidation by engineered strains.

View Article and Find Full Text PDF

The effect of recombinant spidroin (RS) hydrogel (HG) on anterior epithelial cells and keratocytes of the human cornea was studied in vitro. Corneal injuries are highly prevalent in developing countries according to the World Health Organization. Various technologies have recently been proposed to restore the damaged surface of the cornea.

View Article and Find Full Text PDF

The production and transplantation of functionally active human neurons is a promising approach to cell therapy. Biocompatible and biodegradable matrices that effectively promote the growth and directed differentiation of neural precursor cells (NPCs) into the desired neuronal types are very important. The aim of this study was to evaluate the suitability of novel composite coatings (CCs) containing recombinant spidroins (RSs) rS1/9 and rS2/12 in combination with recombinant fused proteins (FP) carrying bioactive motifs (BAP) of the extracellular matrix (ECM) proteins for the growth of NPCs derived from human induced pluripotent stem cells (iPSC) and their differentiation into neurons.

View Article and Find Full Text PDF

Recombinant spidroins (RS; the analogues of silk proteins of spider's web) have multiple properties beneficial for bioengineering, including their suitability for electrospinning and thus, for production of materials with oriented fibers. This makes RS-based matrices potentially effective in stimulating regeneration of peripheral nerves. The restoration of injured nerves also depends on prompt regrowth of blood vessels.

View Article and Find Full Text PDF

was engineered for efficient aerobic conversion of glucose to fumaric acid. A novel design for biosynthesis of the target product through the modified TCA cycle rather than via glyoxylate shunt, implying oxaloacetate formation from pyruvate and artificial channelling of 2-ketoglutarate towards succinic acid via succinate semialdehyde formation, was implemented. The main fumarases were inactivated in the core strain MSG1.

View Article and Find Full Text PDF