Using oxygen-17 as a nuclear probe, spin relaxometry was applied to study the high-density and low-density states of amorphous ice, covering temperatures below and somewhat above their glass transitions. These findings are put in perspective with results from deuteron nuclear magnetic resonance and with calculations based on dielectrically detected correlation times. This comparison reveals the presence of a wide distribution of correlation times.
View Article and Find Full Text PDFIn this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence.
View Article and Find Full Text PDFHigh-pressure ice polymorphs are important for our understanding of hydrogen bonding and exist in the interior of the earth and icy moons. Nonetheless, spectroscopic information about them is scarce, where no information about their optical properties in the near-infrared (NIR) region is available at all. We here report NIR spectra of six ice polymorphs differing in terms of their density and O-atom topology, namely, ices II, IV, V, VI, IX, and XII, in comparison with the known spectra of ice I.
View Article and Find Full Text PDFCalorimetric studies on ice II reveal a surprising HO/DO isotope effect. While the ice II to ice Ic transition is endothermic for HO, it is exothermic for DO samples. The transition enthalpies are +40 and -140 J/mol, respectively, where such a sign change upon isotope substitution is unprecedented in ice research.
View Article and Find Full Text PDFWater can form a vast number of topological frameworks owing to its hydrogen-bonding ability, with 19 different forms of ice experimentally confirmed at present. Here, the authors comment on open questions and possible future discoveries, covering negative to ultrahigh pressures.
View Article and Find Full Text PDF