Publications by authors named "V Forge"

An artificial amyloid-based redox hydrogel was designed for mediating electron transfer between a [NiFeSe] hydrogenase and an electrode. Starting from a mutated prion-forming domain of fungal protein HET-s, a hybrid redox protein containing a single benzyl methyl viologen moiety was synthesized. This protein was able to self-assemble into structurally homogenous nanofibrils.

View Article and Find Full Text PDF

Bcl-xL, a member of the Bcl-2 family, is a pro-survival protein involved in apoptosis regulation. We have previously reported the ability of Bcl-xL to form various types of fibers, from native to amyloid conformations. Here, we have mimicked the effect of apoptosis-induced caspase activity on Bcl-xL by limited proteolysis using trypsin.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) have great potential in biomedical and clinical applications because of their many unique properties. This contribution provides an overview of the MNPs mainly used in the field of amyloid diseases. The first part discusses their use in understanding the amyloid mechanisms of fibrillation, with emphasis on their ability to control aggregation of amyloidogenic proteins.

View Article and Find Full Text PDF

Heterogeneity and polymorphism are generic features of amyloid fibers with some important effects on the related disease development. We report here the characterization, by charge detection mass spectrometry, of amyloid fibers made of three polypeptides involved in neurodegenerative diseases: Aβ peptide, tau and α-synuclein. Beside the mass of individual fibers, this technique enables to characterize the heterogeneity and the polymorphism of the population.

View Article and Find Full Text PDF

Aim: Gadolinium-based nanoparticles were functionalized with either the Pittsburgh compound B or a nanobody (B10AP) in order to create multimodal tools for an early diagnosis of amyloidoses.

Materials & Methods: The ability of the functionalized nanoparticles to target amyloid fibrils made of β-amyloid peptide, amylin or Val30Met-mutated transthyretin formed in vitro or from pathological tissues was investigated by a range of spectroscopic and biophysics techniques including fluorescence microscopy.

Results: Nanoparticles functionalized by both probes efficiently interacted with the three types of amyloid fibrils, with K values in 10 micromolar and 10 nanomolar range for, respectively, Pittsburgh compound B and B10AP nanoparticles.

View Article and Find Full Text PDF