In the field of hydrogen production, MoS demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms ( molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS thin films doped with Co and Mn ions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The integration of lead sulfide quantum dots (QDs) with a high-conductivity material that is compatible with a scalable fabrication is an important route for the applications of QD-based photodetectors. Herein, we first developed a broadband photodetector by combining amorphous ZnO and PbS QDs, forming a heterojunction structure. The photodetector showed detectivity up to 7.
View Article and Find Full Text PDFWe report on the characterization of resistive switching devices based on epitaxial CeO2 thin films as a functional material. CeO2 epitaxial thin films were grown by the pulsed laser deposition technique on conductive substrates. Platinum and titanium nitride top electrodes (TE) were successively deposited.
View Article and Find Full Text PDFSamaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy.
View Article and Find Full Text PDFScanning probe bias techniques have been used as a method to locally dope thin epitaxial films of La(2)CuO(4) (LCO) fabricated by pulsed laser deposition. The local electrochemical oxidation of LCO very efficiently introduces interstitial oxygen defects in the thin film. Details on the influence of the tip voltage bias and environmental conditions on the surface morphology have been investigated.
View Article and Find Full Text PDF