Magnetic 2D materials enable interesting tuning options of magnetism. As an example, the van der Waals material FePS, a zig-zag-type intralayer antiferromagnet, exhibits very strong magnetoelastic coupling due to the different bond lengths along different ferromagnetic and antiferromagnetic coupling directions enabling elastic tuning of magnetic properties. The likely cause of the length change is the intricate competition between direct exchange of the Fe atoms and superexchange via the S and P atoms.
View Article and Find Full Text PDFBismuth produces different types of ordered superstructures on the InAs(100) surface, depending on the growth procedure and coverage. The (2 × 1) phase forms at completion of one Bi monolayer and consists of a uniformly oriented array of parallel lines of Bi dimers. Scanning tunneling and core level spectroscopies demonstrate its metallic character, in contrast with the semiconducting properties expected on the basis of the electron counting principle.
View Article and Find Full Text PDFThe design of 2D metal-organic frameworks (2D MOFs) takes advantage of the combination of the diverse electronic properties of simple organic ligands with different transition metal (TM) centers. The strong directional nature of the coordinative bonds is the basis for the structural stability and the periodic arrangement of the TM cores in these architectures. Here, direct and clear evidence that 2D MOFs exhibit intriguing energy-dispersive electronic bands with a hybrid character and distinct magnetic properties in the metal cores, resulting from the interactions between the TM electronic levels and the organic ligand π-molecular orbitals, is reported.
View Article and Find Full Text PDFTwo-dimensional metal-organic frameworks (2D-MOFs) represent a category of atomically thin materials that combine the structural tunability of molecular systems with the crystalline structure characteristic of solids. The strong bonding between the organic linkers and transition metal centers is expected to result in delocalized electronic states. However, it remains largely unknown how the band structure in 2D-MOFs emerges through the coupling of electronic states in the building blocks.
View Article and Find Full Text PDFThe introduction of a graphene (Gr) buffer layer between a ferromagnetic substrate and a metallorganic molecule is known to mediate the magnetic coupling between them, an effect attributed to a weak hybridization between graphene and molecule. In this paper, we present experimental evidence of this effect through a detailed investigation of the frontier electronic properties of iron phthalocyanine deposited on cobalt-supported graphene. Despite being physisorbed, the molecular adsorption on Gr/Co induces a sizeable charge transfer from graphene to the molecular macrocycle leading to the partial occupation of the LUMO and the appearance of an energetically localized hybrid state, which can be attributed to the overlap between the graphene p state and the molecular macrocycle.
View Article and Find Full Text PDF