Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCrS up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases.
View Article and Find Full Text PDFWe performed small-angle neutron scattering (SANS) measurements on the helimagnetic spinel compound ZnCr2Se4. The ground state of this material is a multi-domain spin-spiral phase, which undergoes domain selection in a magnetic field and reportedly exhibits a transition to a proposed spin-nematic phase at higher fields. We observed a continuous change in the magnetic structure as a function of field and temperature, as well as a weak discontinuous jump in the spiral pitch across the domain-selection transition upon increasing field.
View Article and Find Full Text PDFWe report on ultrasound studies of FeCr2S4 in static and pulsed magnetic fields exhibiting an orbital-order transition at 9 K. A longitudinal acoustic mode exhibits distinct features in the phase space of temperature and magnetic field due to magnetic and structural transformations. Pulsed-field measurements show significant differences in the sound velocity below and above the orbital-ordering transition as well as the spin-reorientation transition at 60 K.
View Article and Find Full Text PDFThe magnetic-field and temperature dependencies of the ultrasound propagation and magnetization of single-crystalline CoCr(2)O(4) have been studied in static and pulsed magnetic fields up to 14 and 62 T, respectively. Distinct anomalies with significant changes in the sound velocity and attenuation are found in this spinel compound at the onset of long-range incommensurate-spiral-spin order at T(s)=27 K and at the transition from the incommensurate to the commensurate states at T(l)=14 K, evidencing strong spin-lattice coupling. While the magnetization evolves gradually with the field, steplike increments in the ultrasound clearly signal a transition into a new magnetostructural state between 6.
View Article and Find Full Text PDFUltrasound and magnetization studies of bond-frustrated ZnCr(2)S(4) spinel are performed in static magnetic fields up to 18 T and in pulsed fields up to 62 T. At temperatures below the antiferromagnetic transition at T(N1)≈14 K, the sound velocity as a function of the magnetic field reveals a sequence of steps followed by plateaus indicating a succession of crystallographic structures with constant stiffness. At the same time, the magnetization evolves continuously with a field up to full magnetic polarization without any plateaus in contrast to geometrically frustrated chromium oxide spinels.
View Article and Find Full Text PDF