Introduction: One of the most common complications of coronavirus disease 2019 (COVID-19) is myocardial injury, and although its cause is unclear, it can alter the heart's contractility. This study aimed to characterize the ventricular and atrial strain in patients who recovered from COVID-19 using cardiovascular magnetic resonance feature-tracking (CMR-FT).
Methods: In this single-center study, we assessed left ventricle (LV) and right ventricular (RV) global circumferential strain (GCS), global longitudinal strain (GLS), global radial strain (GRS), left atrial (LA) and right atrial (RA) longitudinal strain (LS) parameters by CMR-FT.
Background: Female carriers of dystrophin gene mutations (DMD-FC) were previously considered non-manifesting, but in recent decades, cardiomyopathy associated with muscular dystrophy and myocardial fibrosis has been described. Our study aimed to assess prospectively myocardial fibrosis in asymptomatic DMD-FC compared to a sex-matched control group (CG) with similar age distribution using native T mapping and extracellular volume (ECV) quantification by cardiovascular magnetic resonance (CMR) imaging.
Materials And Methods: 38 DMD-FC with verified genetic mutation and 22 healthy volunteers were included.
Atrial fibrillation (AF) is an abnormal and irregular heartbeat caused by uncoordinated electrical impulses in the left atrium (LA), which could induce lasting changes in the heart tissue or could be a consequence of underlying cardiac disease. This study aimed to assess the left atrial phasic function and deformation in paroxysmal AF (PAF) patients-who had not received radiofrequency ablation and had no signs of permanent AF-using the cardiovascular magnetic resonance (CMR) feature-tracking (FT) technique. Fifty subjects (27 PAF patients and 23 controls) were included and examined with CMR.
View Article and Find Full Text PDF