Publications by authors named "V Falko"

Article Synopsis
  • Twisted two-dimensional (2D) material heterostructures allow researchers to explore unique physical phenomena, especially at small twist angles where crystals rearrange themselves.
  • Understanding these complex materials requires advanced imaging techniques to visualize the local configurations, which can vary due to disorder.
  • The study presents an effective method using electron channeling contrast imaging (ECCI) to non-destructively visualize these domains in twisted transition metal dichalcogenide (TMD) heterostructures, even under encapsulation layers, enhancing insight into their properties.
View Article and Find Full Text PDF

Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits. First predicted 40 years ago, scars are special eigenstates that counterintuitively defy ergodicity in quantum systems whose classical counterpart is chaotic. Despite the importance and long history of scars, their direct visualization in quantum systems remains an open field.

View Article and Find Full Text PDF

Coulomb drag between adjacent electron and hole gases has attracted considerable attention, being studied in various two-dimensional systems, including semiconductor and graphene heterostructures. Here we report measurements of electron-hole drag in the Planckian plasma that develops in monolayer graphene in the vicinity of its Dirac point above liquid-nitrogen temperatures. The frequent electron-hole scattering forces minority carriers to move against the applied electric field due to the drag induced by majority carriers.

View Article and Find Full Text PDF

Controlling excitons at the nanoscale in semiconductor materials represents a formidable challenge in the quantum photonics and optoelectronics fields. Monolayers of transition metal dichalcogenides (TMDs) offer inherent 2D confinement and possess significant exciton binding energies, making them promising candidates for achieving electric-field-based confinement of excitons without dissociation. Exploiting the valley degree of freedom associated with these confined states further broadens the prospects for exciton engineering.

View Article and Find Full Text PDF

The ongoing efforts to optimize rechargeable Li-ion batteries led to the interest in intercalation of nanoscale layered compounds, including bilayer graphene. Its lithium intercalation has been demonstrated recently but the mechanisms underpinning the storage capacity remain poorly understood. Here, using magnetotransport measurements, we report in-operando intercalation dynamics of bilayer graphene.

View Article and Find Full Text PDF