Publications by authors named "V F Kondratenko"

Improving the selectivity in the oxidative coupling of methane to ethane/ethylene poses a significant challenge for commercialization. The required improvements are hampered by the uncertainties associated with the reaction mechanism due to its complexity. Herein, we report about 90 % selectivity to the target products at 11 % methane conversion over GdO-based catalysts at 700 °C using NO as the oxidant.

View Article and Find Full Text PDF

The development of selective catalysts for direct conversion of ammonia into nitrous oxide, NO, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective NO production over 100 h on stream up to 79% NO selectivity at full NH conversion.

View Article and Find Full Text PDF

Knowing the structure of catalytically active species/phases and providing methods for their purposeful generation are two prerequisites for the design of catalysts with desired performance. Herein, we introduce a simple method for precise preparation of supported/bulk catalysts. It utilizes the ability of metal oxides to dissolve and to simultaneously precipitate during their treatment in an aqueous ammonia solution.

View Article and Find Full Text PDF

Nitrous oxide, N O, exhibits unique reactivity in oxidation catalysis, but the high manufacturing costs limit its prospective uses. Direct oxidation of ammonia, NH , to N O can ameliorate this issue but its implementation is thwarted by suboptimal catalyst selectivity and stability, and the lack of established structure-performance relationships. Systematic and controlled material nanostructuring offers an innovative approach for advancement in catalyst design.

View Article and Find Full Text PDF

Controlling the precise atomic architecture of supported metals is central to optimizing their catalytic performance, as recently exemplified for nanostructured platinum and ruthenium systems in acetylene hydrochlorination, a key process for vinyl chloride production. This opens the possibility of building on historically established activity correlations. In this study, we derived quantitative activity, selectivity and stability descriptors that account for the metal-dependent speciation and host effects observed in acetylene hydrochlorination.

View Article and Find Full Text PDF