Publications by authors named "V Enchev"

Reaction pathway of prebiotic reactions for formation of the pteridines: pterin, xanthopterine, isoxanthopterine and leucopterine, as well as the purine nucleobase guanine from pure formamide are presented. In these reactions, formamide or its tautomer, formimidic acid, play the role of proton-carrying catalyst. All required raw materials, such as hydrogen cyanide, ammonia, water, formic acid, urea, 2-aminomalononitrile, glyoxal, glyoxylic acid and oxalic acid needed in the self-catalyzed reactions are obtained by partial decomposition of formamide.

View Article and Find Full Text PDF

Fluorescent and computational methods were used to elucidate the binding expedient of 2-carbamido-1,3-indandione (CAID) tautomers to nucleotides. The dependence of the fluorescence emission of CAID loaded nucleic acids sequences to compound concentration, temperature and time variation was investigated. It was found that the subject compound binds to nucleic acids but does not intercalate.

View Article and Find Full Text PDF

Abiotic synthesis of nucleobases and amino acids is of critical importance as it sheds light on potential prebiotic chemical reactions. During thermal decomposition of formamide in vacuum conditions, purine, cytosine, adenine, hypoxanthine, uracil, pterin, urea, urocanic acid, glycine, alanine and norvaline were detected. The compounds were obtained without catalyst by heating at 100-180 °C or microwave heating of formamide.

View Article and Find Full Text PDF

Syn- and anti-conformers of four tautomer structures of inosine were studied in the gas phase and in solvent water to investigate the possibility of hydrogen bonding and tautomeric conversion. It was found that in the gas phase and in water solution the most stable is the syn-conformer of the 6-keto tautomer followed by its anti-conformer and syn-conformer of the 6-enol form. In the gas phase, the percent content of syn- and anti-conformers is 83.

View Article and Find Full Text PDF

To provide an in-depth insight into the molecular basis of spontaneous tautomerism in DNA and RNA base pairs, a hybrid Monte Carlo (MC)-quantum chemical (QC) methodology is implemented to map two-dimensional potential energy surfaces along the reaction coordinates of solvent-assisted proton transfer processes in guanosine and its analog acyclovir in aqueous solution. The solvent effects were simulated by explicit inclusion of water molecules that model the relevant part of the first hydration shell around the solute. The position of these water molecules was estimated by carrying out a classical Metropolis Monte Carlo simulation of dilute water solutions of the guanosine (Gs) and acyclovir (ACV) and subsequently analyzing solute-solvent intermolecular interactions in the statistically-independent MC-generated configurations.

View Article and Find Full Text PDF