Publications by authors named "V Emilsson"

Enhancing thermogenic brown adipose tissue (BAT) function is a promising therapeutic strategy for metabolic disease. However, predominantly thermoneutral modern human living conditions deactivate BAT. We demonstrate that selective adipocyte deficiency of the oxygen-sensor HIF-prolyl hydroxylase (PHD2) gene overcomes BAT dormancy at thermoneutrality.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed serum proteins in 5,127 older Icelandic adults to gain insights into the molecular processes of late-onset Alzheimer's disease (LOAD) over nearly 13 years.
  • Researchers identified 303 proteins linked to incident LOAD, with over 40% showing independent associations from the APOE-ε4 gene variant, indicating involvement in neuronal functions.
  • Four proteins were found to be downregulated by APOE-ε4 but upregulated in LOAD, suggesting they may reflect a biological response to the onset of the disease, highlighting dysregulated processes early in LOAD development.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-β (Aβ) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aβ and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aβ and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan.

View Article and Find Full Text PDF

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n = 5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years).

View Article and Find Full Text PDF