Publications by authors named "V Eisner"

Mitochondria harbor their own DNA (mtDNA), which codifies essential proteins of the oxidative phosphorylation (OXPHOS) system and locally feeds them to their surrounding inner mitochondrial membrane (IMM), according to the 'sphere of influence' theory. mtDNA is compacted into nucleoids, which are tethered to the IMM and distributed throughout the mitochondrial network. Some nucleoid subpopulations present distinct intramitochondrial positioning during fission and their correct positioning is associated with mtDNA segregation and selective degradation.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in severe disruption of communication between the brain and body, causing motor, sensory, and autonomic dysfunctions. While SCI in mammals leads to permanent impairment due to limited regenerative capacity, certain non-mammalian species, such as larval stages, exhibit remarkable regenerative abilities. During spinal cord regeneration, neural stem precursor cells (NSPCs) surrounding the central canal rapidly proliferate in response to SCI, compensating for cellular loss, restoring canal continuity, and generating new neurons to reestablish lost connections.

View Article and Find Full Text PDF

Optic atrophy protein 1 (OPA1) mediates inner mitochondrial membrane (IMM) fusion and cristae organization. Mutations in OPA1 cause autosomal dominant optic atrophy (ADOA), a leading cause of blindness. Cells from ADOA patients show impaired mitochondrial fusion, cristae structure, bioenergetic function, and mitochondrial DNA (mtDNA) integrity.

View Article and Find Full Text PDF

Inner mitochondrial membrane fusion and cristae shape depend on optic atrophy protein 1, OPA1. Mutations in lead to autosomal dominant optic atrophy (ADOA), an important cause of inherited blindness. The Guanosin Triphosphatase (GTPase) and GTPase effector domains (GEDs) of OPA1 are essential for mitochondrial fusion; yet, their specific roles remain elusive.

View Article and Find Full Text PDF

Dysfunction of the aging heart is a major cause of death in the human population. Amongst other tasks, mitochondria are pivotal to supply the working heart with ATP. The mitochondrial inner membrane (IMM) ultrastructure is tailored to meet these demands and to provide nano-compartments for specific tasks.

View Article and Find Full Text PDF