Although Fusarium oxysporum pathogens cause severe wilts in about 80 botanical species, the mechanisms of pathogenicity and symptom induction are poorly understood. Knowledge about the genetic and biochemical pathways involved in the pathogenesis of F. oxysporum would be invaluable in getting targets for both fungicide development and search for biocontrol agents.
View Article and Find Full Text PDFThe genetic diversity of soil-borne populations of Fusarium oxysporum was assessed using 350 isolates collected from six different French soils. All isolates were characterised by restriction fragment analysis of the PCR-amplified ribosomal intergenic spacer (IGS). Twenty-six IGS types were identified among the 350 isolates analysed.
View Article and Find Full Text PDFABSTRACT The effect of the plant on the diversity of soilborne populations of Fusarium oxysporum was assessed after successive cultures of flax, melon, tomato, and wheat in separate samples of the same soil. Forty soil-borne isolates of F. oxysporum and forty root-colonizing isolates of each plant species were sampled during the first (T0) and fourth (T1) cultures.
View Article and Find Full Text PDFInt J Syst Bacteriol
October 1993
Levels of DNA relatedness between strains isolated from root nodules of Phaseolus vulgaris and reference strains of different Rhizobium species were determined by performing DNA-DNA hybridization experiments (S1 nuclease method). The nine strains examined were members of three genomic groups previously delineated by a restriction fragment length polymorphism analysis among strains isolated from P. vulgaris at different sites in France.
View Article and Find Full Text PDF