Mid-infrared laser absorption spectroscopy enables rapid and nondestructive analysis of methane clumped isotopes. However, current analytical methods require a sample size of 20 mL STP (0.82 mmol) of pure CH gas, which significantly limits its application to natural samples.
View Article and Find Full Text PDFThe quickly developing drone technology can be used efficiently in the field of pipeline leak detection. The aim of this article is to provide drone mission concepts for detecting releases from pipelines. It provides an overview of the current applications of natural gas pipeline surveys, it considers environmental conditions by plume modelling, it discusses suitable commercially available sensors, and develops concepts for routine monitoring of pipelines and short term missions for localising and identifying a known leakage.
View Article and Find Full Text PDFThe use of optical circular multipass absorption cells (CMPAC) in an open-path configuration enables the sampling free analysis of cylindrical gas flows with high temporal resolution and only minimal disturbances to the sample gas in the pipe. Combined with their robust unibody design, CMPACs are a good option for many applications in atmospheric research and industrial process monitoring. When deployed in an open-path configuration, the effects of inhomogeneities in the gas temperature and composition have to be evaluated to ensure that the resulting measurement error is acceptable for a given application.
View Article and Find Full Text PDFNon-impact effects in the absorption spectra of HCl in various collision-partners are investigated both experimentally and theoretically. Fourier transform spectra of HCl broadened by CO2, air, and He have been recorded in the 2-0 band region at room temperature and for a wide pressure range, from 1 to up to 11.5 bars.
View Article and Find Full Text PDFSuper-Lorentzian effects in the troughs between lines and the pressure dependence of the line intensities retrieved from fits of absorption spectra of pure HCl have been investigated both experimentally and theoretically. For that, spectra of pure HCl gas in the 2-0 band were recorded with a Fourier Transform spectrometer at room temperature and for pressures ranging from 1 to 10 atm. The line intensities, retrieved from fits of the measurements with the Voigt profile using a single spectrum fitting technique, reveal large decreases with increasing pressure - up to 3% per atm - with a relatively weak rotational dependence.
View Article and Find Full Text PDF