Publications by authors named "V E Zagidullin"

Quantum dots (QDs) can absorb ultraviolet and long-wavelength light energy much more efficiently than natural light-harvesting proteins and transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion into liposomes of RC membrane pigment-protein complexes combined with QDs as antennae opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components. RCs from Rhodobacter sphaeroides and QDs with fluorescence maximum at 530 nm (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent.

View Article and Find Full Text PDF

Chlorophyll fluorescence decay kinetics was measured in sulfur deprived cells of green alga Chlamydomonas reinhardtii with a home made picosecond fluorescence laser spectrometer. The measurements were carried out on samples either shortly adapted to the dark ('Fo conditions') or treated to reduce Qa ('Fm conditions'). Bi-exponential fitting of decay kinetics was applied to distinguish two components one of them related to energy trapping (fast component) and the other to charge stabilization and recombination in PS 2 reaction centers (slow component).

View Article and Find Full Text PDF