Publications by authors named "V E Shershov"

A method has been developed for manufacturing biological microchips on an aluminum substrate with hydrophilic cells from brush copolymers with the formation of a matrix of cells using photolithography. The surface of aluminum substrates was previously coated with a thin, durable, moderately hydrophobic layer of cross-linked polymer to prevent contact with the aluminum surface of the components used in the analysis of nucleic acids. Aluminum biochip substrates have high thermal conductivity and low heat capacity, which is important for the development of methods for multiplex PCR analysis on a chip.

View Article and Find Full Text PDF

The development of rapid analysis of human serum for the presence of allergen-specific Immunoglobulin E (IgE) is currently important. Consequently, we developed two types of three-dimensional (3D) protein biochips. The first one is a 3D hydrogel biochip containing hydrogel droplets with protein molecules (allergens, immunoglobulins and others).

View Article and Find Full Text PDF

A general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2'-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside triphosphates with an amino acid-like side chain was developed. The present chemical method outweighs the other reported methods of a base-modified nucleoside triphosphates synthesis in terms of it being a protection-free strategy, the shortening of reaction steps, and increased yields (about 70%).

View Article and Find Full Text PDF

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture.

View Article and Find Full Text PDF

Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.

View Article and Find Full Text PDF