Publications by authors named "V E Ragaini"

A new reactor in which microwaves (MW), delivered by a coaxial dipole antenna, and ultrasound (US), delivered by a metallic horn, can be simultaneously used in a liquid to perform different types of processes, widely referenced in literature, is presented in detail. Calibrations of thermal energy delivered to two liquids having very different dipolar moments (i.e.

View Article and Find Full Text PDF

Brønsted-acidic ionic liquids that bear a sulfonic acid group, known as Forbes acids, show a good catalytic activity for the Beckmann rearrangement, used to prepare ε-caprolactam, which is a precursor of Nylon 6. The activity essentially stems from the acidity of the sulfonic acid group. Although these task specific ionic liquids suffer from a high viscosity, this drawback can be circumvented at higher temperatures.

View Article and Find Full Text PDF

Supported iron-based Fischer-Tropsch (FT) catalysts with high loading of active metal have been prepared using both traditional and innovative methods. In these latter the impregnation of silica support has been performed by adding a step involving an ultrasound (US) or a microwave (MW) treatment to improve the metal deposition and to increase the catalyst activity. FT results have indicated the catalysts prepared by US as the most efficient, particularly when sonication is performed in argon atmosphere.

View Article and Find Full Text PDF

Nanocrystalline TiO(2) samples were prepared by promoting the growth of a sol-gel precursor, in the presence of water, under continuous (CW), or pulsed (PW) ultrasound. All the samples turned out to be made of both anatase and brookite polymorphs. Pulsed US treatments determine an increase in the sample surface area and a decrease of the crystallite size, that is also accompanied by a more ordered crystalline structure and the samples appear to be more regular and can be considered to contain a relatively low concentration of lattice defects.

View Article and Find Full Text PDF

The rate of 1,4-dichlorobenzene (1,4-DCB) degradation and mineralization in the aqueous phase was investigated either under direct photolysis or photocatalysis in the presence of commercial or sol-gel synthesized TiO2, or under sonolysis at 20 kHz with different power inputs. Two lamps, both emitting in the 340-400 nm wavelength range with different energy, were employed as irradiation sources. Photocatalysis ensured faster removal of 1,4-DCB with respect to sonolysis and direct photolysis.

View Article and Find Full Text PDF