We investigated the properties of optical lattice clocks operated with a repulsive light-shift potential. The magic wavelength, where light-shift perturbation for the clock transition cancels, was experimentally determined to be 389.889(9) nm for 87Sr.
View Article and Find Full Text PDFWe report a hitherto undiscovered frequency shift for forbidden J = 0-->J = 0 clock transitions excited in atoms confined to an optical lattice. These shifts result from magnetic-dipole and electric-quadrupole transitions, which have a spatial dependence in an optical lattice that differs from that of the stronger electric-dipole transitions. In combination with the residual translational motion of atoms in an optical lattice, this spatial mismatch leads to a frequency shift via differential energy level spacing in the lattice wells for ground state and excited state atoms.
View Article and Find Full Text PDFWe report vapor-cell magneto-optical trapping of Hg isotopes on the (1)S(0)-(3)P(1) intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest nonradioactive atom trapped so far, which enables sensitive atomic searches for "new physics" beyond the standard model.
View Article and Find Full Text PDFThe light-induced frequency shift due to hyperpolarizability (i.e., terms of second-order in intensity) is studied for a forbidden optical transition, J = 0 --> J = 0.
View Article and Find Full Text PDFAn ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s(2) 1S0-->5s5p 3P0 transition of 87Sr atoms as a "clock transition." Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10(-17).
View Article and Find Full Text PDF