Publications by authors named "V E Kuznetsova"

A method has been developed for manufacturing biological microchips on an aluminum substrate with hydrophilic cells from brush copolymers with the formation of a matrix of cells using photolithography. The surface of aluminum substrates was previously coated with a thin, durable, moderately hydrophobic layer of cross-linked polymer to prevent contact with the aluminum surface of the components used in the analysis of nucleic acids. Aluminum biochip substrates have high thermal conductivity and low heat capacity, which is important for the development of methods for multiplex PCR analysis on a chip.

View Article and Find Full Text PDF

The development of rapid analysis of human serum for the presence of allergen-specific Immunoglobulin E (IgE) is currently important. Consequently, we developed two types of three-dimensional (3D) protein biochips. The first one is a 3D hydrogel biochip containing hydrogel droplets with protein molecules (allergens, immunoglobulins and others).

View Article and Find Full Text PDF

To identify nucleolus organizing regions (NORs), fluorescence hybridization (FISH) with 18S rDNA probe was performed on chromosomes of Linnaeus, 1758 (Tenthredinidae), (Linnaeus, 1767) (Argidae) (n = 10 in both) and (Bouché, 1834) (Cynipidae) (2n = 20). In all these species, a single pericentromeric rDNA cluster per haploid karyotype was detected. This number of NORs is confirmed as ancestral for the order Hymenoptera.

View Article and Find Full Text PDF

The replenishment of bone deficiency remains a challenging task in clinical practice. The use of gene-activated matrices (GAMs) impregnated with genetic constructs may be an innovative approach to solving this problem. The aim of this work is to develop collagen-based matrices with the addition of platelet-rich plasma, carrying polyplexes with the gene, to study their biocompatibility and osteogenic potential in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Natural killer (NK) cells are crucial for combating myeloid malignancies, and their function is linked to extended remission in chronic myeloid leukemia (CML), but they experience suppression during the disease.
  • Research using a CML mouse model revealed that NK cells have reduced numbers, an immature state, and decreased ability to kill cancer cells, which can improve when the BCR::ABL1 protein is inhibited.
  • The study found that inflammatory signals in the CML environment, particularly from TNFa, impair NK cell function, indicating that targeting inflammatory pathways could improve NK cell therapies for CML patients.
View Article and Find Full Text PDF