Biosensors (Basel)
December 2023
Refractive index sensing based on surface plasmon resonance (SPR) is a highly efficient label-free technique for biomolecular detection. The performance of this method is defined by the dielectric properties of a sensing layer and its structure. Nanohole arrays in thin metal films provide good refractive index sensitivity but often suffer from a large resonance linewidth, which limits their broad practical application in biosensorics.
View Article and Find Full Text PDFProtein dynamics plays a key role in live cell functioning, stimulating the development of new experimental techniques for studying protein transport phenomena. Here, we introduce a relaxation method that is based on the rapid formation of a nonequilibrium concentration profile of the enhanced green fluorescent protein (EGFP) across a sample by its oxidative green-to-red photoconversion. Following the blue-light irradiation of a part of a sample containing EGFP and an oxidant, the diffusion-controlled response of a system is monitored.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2021
Anisotropic noble metal nanoparticles supporting more than one localized surface plasmon resonance can be tailored for efficient dual-mode fluorescence enhancement by ensuring an adequate coupling to both absorption and emission bands of fluorophores. This approach is naturally extended to two-photon excitation fluorescence, where a molecule is excited by simultaneous nonlinear absorption of two photons. However, the relative impact of plasmon coupling to excitation and emission on the overall fluorescence enhancement can be very different in this case.
View Article and Find Full Text PDFFluorescence of organic molecules can be enhanced by plasmonic nanostructures through coupling to their locally amplified electromagnetic field, resulting in higher brightness and better photostability of fluorophores, which is particularly important for bioimaging applications involving fluorescent proteins as genetically encoded biomarkers. Here, we show that a hybrid bionanosystem comprised of a monolayer of Enhanced Green Fluorescent Protein (EGFP) covalently linked to optically thin Ag films with short-range ordered nanohole arrays can exhibit up to 6-fold increased brightness. The largest enhancement factor is observed for nanohole arrays with a propagating surface plasmon mode, tuned to overlap with both excitation and emission of EGFP.
View Article and Find Full Text PDFAnisotropic metal nanostructures reveal unique optical properties providing new optical effects. Here we study experimentally the nonlinear-optical response of planar arrays of gold comma-like and crescent-like nanostructures made by colloidal lithography. We show that anisotropy of the nonlinear-optical response is defined not only by the shape of the particles, but also by the relative phase of second-order susceptibility components, which are found to be spectrally sensitive.
View Article and Find Full Text PDF