Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode.
View Article and Find Full Text PDFThe study presents a bioindication complex and a technology of the experiment based on a submersible digital holographic camera with advanced monitoring capabilities for the study of plankton and its behavioral characteristics in situ. Additional mechanical and software options expand the capabilities of the digital holographic camera, thus making it possible to adapt the depth of the holographing scene to the parameters of the plankton habitat, perform automatic registration of the "zero" frame and automatic calibration, and carry out natural experiments with plankton photostimulation. The paper considers the results of a long-term digital holographic experiment on the biotesting of the water area in Arctic latitudes.
View Article and Find Full Text PDFIntroduction: This study aimed to evaluate the long-term outcomes of stage I breast cancer (BC) patients diagnosed during the current era of screening mammography, immunohistochemistry receptor testing, and systemic adjuvant therapy.
Methods: A retrospective cohort study was conducted on 328 stage I BC patients treated consecutively in a single referral center with a follow-up period of at least 12 years. The primary endpoints were invasive disease-free survival (IDFS) and overall survival (OS).
Purpose: Chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies are effective in a subset of patients with solid tumors, but new approaches are needed to universally improve patient outcomes. Here, we developed a technology to leverage the cooperative effects of IL15 and IL21, two common cytokine-receptor gamma chain family members with distinct, pleiotropic effects on T cells and other lymphocytes, to enhance the efficacy of adoptive T cells.
Experimental Design: We designed vectors that induce the constitutive expression of either membrane-tethered IL15, IL21, or IL15/IL21.
Our previous studies showed that the change in the plankton response to light could be an indicator of environmental pollution. This study experimentally reveals that the response of Daphnia magna Straus and Daphnia pulex plankton ensembles to photostimulation depends on the intensity of the attracting light. This makes it difficult to identify the occurrence and change of pollutant concentration.
View Article and Find Full Text PDF