The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated.
View Article and Find Full Text PDFMicroglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis.
View Article and Find Full Text PDFAlcohol consumption remains a significant global health challenge, causing millions of direct and indirect deaths annually. Intriguingly, recent work has highlighted the prefrontal cortex, a major brain area that regulates inhibitory control of behaviors, whose activity becomes dysregulated upon alcohol abuse. However, whether an endogenous mechanism exists within this brain area that limits alcohol consumption is unknown.
View Article and Find Full Text PDFBackground: The mitochondrial unfolded protein response (UPR) is an evolutionarily conserved mitochondrial response that is critical for maintaining mitochondrial and energetic homeostasis under cellular stress after tissue injury and disease. Here, we ask whether UPR may be a potential therapeutic target for ischemic stroke.
Methods: We performed the middle cerebral artery occlusion and oxygen-glucose deprivation models to mimic ischemic stroke in vivo and in vitro, respectively.
It has been more than a century since Pío del Río-Hortega first characterized microglia in histological stains of brain tissue. Since then, significant advances have been made in understanding the role of these resident central nervous system (CNS) macrophages. In particular, it is now known that microglia can sense neural activity and modulate neuronal circuits accordingly.
View Article and Find Full Text PDF