Cerebrovascular disease accounts for major neurologic disabilities in patients with type 2 diabetes mellitus (DM). A potential association of mitochondrial DNA () and inflammation with cerebral vessel remodeling in patients with type 2 DM was evaluated. A cohort of 150 patients and 30 healthy controls were assessed concerning urinary albumin/creatinine ratio (UACR), synaptopodin, podocalyxin, kidney injury molecule-1 (KIM-1), N-acetyl-β-(D)-glucosaminidase (NAG), interleukins IL-17A, IL-18, IL-10, tumor necrosis factor-alpha (TNFα), intercellular adhesion molecule-1 (ICAM-1).
View Article and Find Full Text PDFMitochondrial dysfunction is an important mechanism contributing to the development and progression of diabetic kidney disease (DKD). Mitochondrial DNA (mtDNA) levels in blood and urine were evaluated in relation to podocyte injury and proximal tubule (PT) dysfunction, as well as to a specific inflammatory response in normoalbuminuric DKD. A total of 150 type 2 diabetes mellitus (DM) patients (52 normoalbuminuric, 48 microalbuminuric, and 50 macroalbuminuric ones, respectively) and 30 healthy controls were assessed concerning the urinary albumin/creatinine ratio (UACR), biomarkers of podocyte damage (synaptopodin and podocalyxin), PT dysfunction (kidney injury molecule-1 (KIM-1) and -acetyl-β-(D)-glucosaminidase (NAG)), and inflammation (serum and urinary interleukins (IL-17A, IL-18, and IL-10)).
View Article and Find Full Text PDFThe rise of multidrug-resistant (MDR) pathogens has become a global health threat and an economic burden in providing adequate and effective treatment for many infections. This large-scale concern has emerged mainly due to mishandling of antibiotics (ABs) and has resulted in the rapid expansion of antimicrobial resistance (AMR). Nowadays, there is an urgent need for more potent, non-toxic and effective antimicrobial agents against MDR strains.
View Article and Find Full Text PDFWith the onset of the COVID-19 pandemic, enormous efforts have been made to understand the genus SARS-CoV-2. Due to the high rate of global transmission, mutations in the viral genome were inevitable. A full understanding of the viral genome and its possible changes represents one of the crucial aspects of pandemic management.
View Article and Find Full Text PDF