Carbonaceous aerosols exhibit seasonal variations due to a complex interplay of emission sources, meteorological conditions, and chemical processes. This study presents the first year-round dual‑carbon isotopic analysis of carbonaceous aerosols in Northeastern Europe (Lithuania). The emphasis was placed on the processes affecting carbonaceous submicron particle (PM) concentrations and their isotopic composition (δC, f) during different seasons.
View Article and Find Full Text PDFWe report on importance of conducting comprehensive studies of atmospheric aerosol particles, which cannot be done if information from various complementary sensors is unavailable. We present an example for such application and recommend on the types of sensors that should be used in view of the ACTRIS and RI-URBANS new strategies for monitoring at supersites. Although active and passive remote sensing data was not available in continuous mode, we show that synergic use of them with in-situ observations allows for comprehensive study of temporal and height-resolved distribution of aerosol in the lower troposphere and it can be successfully combined to assess biomass burning impact on air quality and optical properties.
View Article and Find Full Text PDFThe effects of air pollution on the general public received much attention recently. Personal exposure and deposition fraction of aerosol particles were studied in Vilnius, Lithuania, focusing on individuals working in an office and driving to work. Aerosol monitoring in the urban background was found to give an indication of the minimum concentrations of particulate matter (PM) expected at urban roads, as these correspond to the lowest PM concentrations measured there.
View Article and Find Full Text PDFThis study investigates potential influence of urban trees on black carbon (BC) removal by Norway spruce and silver birch along with the BC formation, mass concentration in air, and source apportionment. The main sources of BC in urban areas are transport, household and industry. BC concentrations monitored in urban background station in Vilnius (Lithuania) showed that biomass burning was a significant contributor to BC emissions even during warm period of the year.
View Article and Find Full Text PDFBackground: The growing public health concern caused by non-communicable diseases in urban surroundings cannot be solved by health care alone; therefore a multidisciplinary approach is mandatory. This study aimed to evaluate the airborne aerosol pollution level in primary schools as possible factor influencing origin and course of the diseases in children.
Methods: Seasonal aerosol particle number concentration (PNC) and mass concentration (PMC) were studied in the randomly selected eleven primary schools in the Lithuanian capital, Vilnius, as model of a middle-size Eastern European city.