Identifying the driver nodes of a network has crucial implications in biological systems from unveiling causal interactions to informing effective intervention strategies. Despite recent advances in network control theory, results remain inaccurate as the number of drivers becomes too small compared to the network size, thus limiting the concrete usability in many real-life applications. To overcome this issue, we introduced a framework that integrates principles from spectral graph theory and output controllability to project the network state into a smaller topological space formed by the Laplacian network structure.
View Article and Find Full Text PDFExhausted T cells (TEX) in cancer and chronic viral infections undergo metabolic and epigenetic remodeling, impairing their protective capabilities. However, the impact of nutrient metabolism on epigenetic modifications that control TEX differentiation remains unclear. We showed that TEX cells shifted from acetate to citrate metabolism by downregulating acetyl-CoA synthetase 2 (ACSS2) while maintaining ATP-citrate lyase (ACLY) activity.
View Article and Find Full Text PDFNeurodegenerative dementias have a profound impact on higher-order cognitive and behavioural functions. Investigating macroscale functional networks through cortical gradients provides valuable insights into the neurodegenerative dementia process and overall brain function. This approach allows for the exploration of unimodal-multimodal differentiation and the intricate interplay between functional brain networks.
View Article and Find Full Text PDFUnder temperature oscillation, cyclic molecular machines such as catalysts and enzymes could harness energy from the oscillatory bath and use it to drive other processes. Using an alternative geometrical approach, under fast temperature oscillation, we derive a general design principle for obtaining the optimal catalytic energy landscape that can harness energy from a temperature-oscillatory bath and use it to invert a spontaneous reaction. By driving the reaction against the spontaneous direction, the catalysts convert low free-energy product molecules to high free-energy reactant molecules.
View Article and Find Full Text PDF