A multimode optical fiber with a truncated transverse cross section acts as a powerful versatile support to investigate the wave features of complex ray dynamics. In this paper, we concentrate on the case of a geometry inducing mixed dynamics. We highlight that regular modes associated with stable periodic orbits present an enhanced spatial intensity localization.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2012
Wave billiards which are chaotic in the geometrical limit are known to support nongeneric spatially localized modes called scar modes. The interaction of the scar modes with gain has been recently investigated in optics in microcavity lasers and vertical-cavity surface-emitting lasers. Exploiting the localization properties of scar modes in their wave-analogous phase-space representation, we report experimental results of scar mode selection by gain in a doped D-shaped optical fiber.
View Article and Find Full Text PDFIn this article, it is shown that multimode periodic segmented waveguides (PSW) are versatile optical systems in which properties of wave chaos can be highlighted. Numerical wave analysis reveals that structures of quantum phase space of PSW are similar to Poincaré sections which display a mixed phase space where stability islands are surrounded by a chaotic sea. Then, unexpected light behavior can occur such as, input gaussian beams do not diverge during the propagation in a highly multimode waveguide.
View Article and Find Full Text PDFA multimode optical fiber with a D-shaped cross section is an experimental paradigm of a wave system with chaotic ray dynamics. We show that seldom but usable modes, called scar modes, localized along some particular direction of the geometric trajectories, can be selectively excited. We report numerical simulations that demonstrate the importance of the so-called self-focal point in the scar mode selection process.
View Article and Find Full Text PDFIn this Letter we propose an original mechanism to select scar modes through coherent gain amplification in a multimode D-shaped fiber. More precisely, we demonstrate the selective amplification of scar modes by positioning a gain region in the vicinity of the self-focal point of the shortest periodic orbit in the transverse motion.
View Article and Find Full Text PDF