We study the effect that disturbances in the ecological landscape exert on the spatial distribution of a population that evolves according to the nonlocal FKPP equation. Using both numerical and analytical techniques, we characterize, as a function of the interaction kernel, the three types of stationary profiles that can develop near abrupt spatial variations in the environmental conditions vital for population growth: sustained oscillations, decaying oscillations and exponential relaxation towards a flat profile. Through the mapping between the features of the induced wrinkles and the shape of the interaction kernel, we discuss how heterogeneities can reveal information that would be hidden in a flat landscape.
View Article and Find Full Text PDFPopulation survival depends on a large set of factors and on how they are distributed in space. Due to landscape heterogeneity, species can occupy particular regions that provide the ideal scenario for development, working as a refuge from harmful environmental conditions. Survival occurs if population growth overcomes the losses caused by adventurous individuals that cross the patch edge.
View Article and Find Full Text PDFInternal feedback is commonly present in biological populations and can play a crucial role in the emergence of collective behavior. To describe the temporal evolution of the distribution of a single-species population, we consider a generalization of the Fisher-KPP equation. This equation includes the elementary processes of random motion, reproduction, and, importantly, nonlocal interspecific competition, which introduces a spatial scale of interaction.
View Article and Find Full Text PDF