While silicon photonic resonant cavities have been widely investigated for biosensing applications, enhancing their sensitivity and detection limit continues to be an area of active research. Here, we describe how to engineer the effective refractive index and mode profile of a silicon-on-insulator (SOI) waveguide using sub-wavelength gratings (SWG) and report on its observed performance as a biosensor. We designed a 30 μm diameter SWG ring resonator and fabricated it using Ebeam lithography.
View Article and Find Full Text PDFStandard silicon photonic strip waveguides offer a high intrinsic refractive index contrast; this permits strong light confinement, leading to compact bends, which in turn facilitates the fabrication of devices with small footprints. Sub-wavelength grating (SWG) based waveguides can allow the fabrication of low loss devices with specific, engineered optical properties. The combination of SWG waveguides with optical micro-resonators can offer the possibility of achieving resonators with properties different from the traditional SOI rings.
View Article and Find Full Text PDFA resonance-enhanced, defect-mediated, ring resonator photodetector has been implemented as a single unit biosensor on a silicon-on-insulator platform, providing a cost effective means of integrating ring resonator sensors with photodetectors for lab-on-chip applications. This method overcomes the challenge of integrating hybrid photodetectors on the chip. The demonstrated responsivity of the photodetector-sensor was 90 mA/W.
View Article and Find Full Text PDFIn this paper we demonstrate silicon on insulator (SOI) sub-wavelength grating (SWG) optical components for integrated optics and sensing. Light propagation in SWG devices is studied and realized with no cladding on top of the waveguide. In particular, we focused on SWG bends, tapers and directional couplers, all realized with compatible geometries in order to be used as building blocks for more complex integrated optics devices (interferometers, switches, resonators, etc.
View Article and Find Full Text PDFThis work presents simulation and experimental results of ultra-thin optical ring resonators, having larger Evanescent Field (EF) penetration depths, and therefore larger sensitivities, as compared to conventional Silicon-on-Insulator (SOI)-based resonator sensors. Having higher sensitivities to the changes in the refractive indices of the cladding media is desirable for sensing applications, as the interactions of interest take place in this region. Using ultra-thin waveguides (<100 nm thick) shows promise to enhance sensitivity for both bulk and surface sensing, due to increased penetration of the EF into the cladding.
View Article and Find Full Text PDF