Publications by authors named "V Djokovic"

The valence band electronic structure of isolated silver iodide nanoparticles (AgI NP) was investigated by vacuum-ultraviolet aerosol photoelectron spectroscopy using the velocity map imaging technique (VUV VMI-PES). The VUV VMI-PES results were obtained for polydisperse aerosol produced by aggregation of hydrocolloid of silver iodide particles 8-15 nm in size. The ionization energy of the AgI particles was found to be 6.

View Article and Find Full Text PDF

Nitrogen-doped carbon dots (NCD) were synthesized using a simple and fast hydrothermal route, employing citric acid and urea as precursors. The resulting NCDs were non-covalently functionalized (conjugated) with aromatic amino acids, namely phenylalanine (Phe) and tryptophan (Trp). Atomic force microscopy revealed that the NCDs exhibit a disk-like morphology with an average diameter of approximately 60 nm and an average height of about 0.

View Article and Find Full Text PDF
Article Synopsis
  • Gold nanoparticles were enhanced using the amino acid tryptophan and vitamin riboflavin, resulting in a 65% increase in resonance energy transfer (RET) efficiency.
  • The presence of these nanoparticles altered the photobleaching dynamics of fluorescent molecules, making them detectable in biological materials with autofluorescent compounds.
  • Using advanced deep-ultraviolet fluorescence microscopy, researchers could classify fluorescent centers in cancer cells to identify areas where the nanoparticles accumulated, despite their small size.
View Article and Find Full Text PDF

Hydrodynamic cavitation treatment was used for the functional inactivation of quorum-sensing lactone molecules of Pseudomonas aeruginosa. Hydroxyl radicals formed as well as the shear effects during the cavitation process induced the inactivation of the signal molecules through hydrolysis reaction coupled with bacterial destruction. Concentration of two different types of homoserine lactones (HSL) molecules was tested after the treatment at various rotational speeds.

View Article and Find Full Text PDF

The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores.

View Article and Find Full Text PDF