Publications by authors named "V Distler"

The effect of transverse mode instability is a limitation for the power scaling of fiber laser systems, that can originate due to heat caused by stimulated Raman scattering. In this contribution, we experimentally investigate the threshold of transverse mode instability caused by stimulated Raman scattering in a passive fiber. Both, the Stokes seed power and the fiber length of a core-pumped Raman fiber amplifier are varied to systematically study this effect.

View Article and Find Full Text PDF

In this paper we present numerical and experimental results revealing that the mode instability threshold of highly Yb-doped, Ce/Al co-doped pedestal fibers is affected by the size of the index-increased pedestal structure surrounding the core. An alternative preparation technology for the realization of large mode area fibers with very large Al-doped silica pedestals is introduced. Three different pedestal fiber design iterations characterized by low photodarkening were manufactured and tested in counter-pumped amplifier setups.

View Article and Find Full Text PDF

Transverse mode instabilities are a major limitation for power scaling of fiber lasers but have so far only been observed in laser-active fibers. In this contribution we present experimental observations of transverse mode instabilities in a passive fiber. In this fiber, stimulated Raman scattering acted as heat source.

View Article and Find Full Text PDF

We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite.

View Article and Find Full Text PDF

The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5 GPa and 1,200 °C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases.

View Article and Find Full Text PDF