Publications by authors named "V Dhanapal"

Smart polymer hydrogels with superior dye adsorption (brilliant green) characteristics were synthesized via free-radical polymerization by grafting acrylic acid segments onto allylated chitosan and inducing crosslinking with a trimethylolpropane triacrylate crosslinker. The synthesized adsorbents were characterized for their chemical structure (FT-IR and H NMR), thermal stability (TG/DTG), and morphological features (SEM). The adsorption capacity for brilliant green (934 mg/g) and water uptake (712 g/g) were determined using spectrophotometric and gravimetric methods, respectively.

View Article and Find Full Text PDF

Purpose: Salvage autologous stem-cell transplantation (sASCT) in patients with multiple myeloma (MM) relapsing after a prior autologous stem-cell transplantation leads to increased remission duration and overall survival. We report a comprehensive study on patient-reported outcomes, including quality of life (QoL) and pain in sASCT.

Methods: Patients were randomly assigned to either sASCT or nontransplantation consolidation (NTC).

View Article and Find Full Text PDF

Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence.

View Article and Find Full Text PDF

A 12-year-old female presented with complaints of progressive visual impairment in both her eyes. On clinical examination, she was short for her age and her ophthalmoscopic examination revealed bilateral optic atrophy. Computed tomography of the patient revealed multiple expansile lytic lesions of mandible suggesting cherubism.

View Article and Find Full Text PDF

Background: Understanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations.

Results: To overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction.

View Article and Find Full Text PDF