Publications by authors named "V De Renzi"

Electron doping of graphene has been extensively studied on graphene-supported surfaces, where the metallicity is influenced by the substrate. Herewith we propose potassium adsorption on free-standing nanoporous graphene, thus eluding any effect due to the substrate. We monitor the electron migration in the π* downward-shifted conduction band.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using magnetron-sputtering to create controlled metal nanoparticles, specifically Ag/MgO, for improved perovskite solar cells.
  • The Ag nanoparticles are deposited on a glass/FTO/TiO substrate, which is essential for the solar cell's front electrode, and their structural and oxidation resistance is thoroughly examined.
  • Optimizing the nanoparticle coverage leads to a significant 5% increase in power conversion efficiency, achieving a total efficiency of 17.8% for the engineered solar cells.
View Article and Find Full Text PDF

Bottom-up approaches exploiting on-surface synthesis reactions allow atomic-scale precision in the fabrication of graphene nanoribbons (GNRs); this is essential for their technological applications since their unique electronic and optical properties are largely controlled by the specific edge structure. By means of a combined experimental-theoretical investigation of some prototype GNRs, we show here that high-resolution electron energy-loss spectroscopy (HREELS) can be successfully employed to fingerprint the details of the GNR edge structure. In particular, we demonstrate how the features of HREEL vibrational spectra - mainly dictated by edge CH out-of-plane modes - are unambiguously related to the GNR edge structure.

View Article and Find Full Text PDF

Lanthanides (Ln) bis-phthalocyanine (Pc), the so-called LnPcdouble decker, are a promising class of molecules with a well-defined magnetic anisotropy. In this work, we investigate the magnetic properties of LnPc molecules UHV-deposited on a graphene/Ni(111) substrate and how they modify when an Au layer is intercalated between Ni and graphene. X-ray absorption spectroscopy (XAS), and linear and magnetic circular dichroism (XLD and XMCD) were used to characterize the systems and probe the magnetic coupling between LnPc molecules and the Ni substrate through graphene, both gold-intercalated and not.

View Article and Find Full Text PDF

The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature.

View Article and Find Full Text PDF