Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction (RT-PCR) cycle threshold (Ct) has been used to estimate quantitative viral load, with the goal of targeting isolation precautions for individuals with coronavirus disease 2019 (COVID-19) and guiding public health interventions. However, variability in specimen quality can alter the Ct values obtained from SARS-CoV-2 clinical assays. We sought to define how variable nasopharyngeal (NP) swab quality impacts clinical SARS-CoV-2 test sensitivity.
View Article and Find Full Text PDFBackground: The SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) cycle of threshold (Ct) has been used to estimate quantitative viral load, with the goal of targeting isolation precautions for individuals with COVID-19 and guiding public health interventions. However, variability in specimen quality can alter the Ct values obtained from SARS-CoV-2 clinical assays. We sought to define how variable nasopharyngeal (NP) swab quality impacts clinical SARS-CoV-2 test sensitivity.
View Article and Find Full Text PDFAqueous dispersions of artificially synthesized, mussel-inspired poly(dopamine) nanoparticles were inkjet printed on flexible polyethylene terephthalate (PET) substrates. Narrow line patterns (4 μm in width) of poly(dopamine) resulted due to evaporatively driven transport (coffee ring effect). The printed patterns were metallized via a site-selective Cu electroless plating process at a controlled temperature (30 °C) for varied bath times.
View Article and Find Full Text PDF