Background: In the current context of global warming, thermal manipulation of avian embryos has received increasing attention as a strategy to promote heat tolerance in avian species by simply increasing the egg incubation temperature. However, because of their likely epigenetic origin, thermal manipulation effects may last more than one generation with consequences for the poultry industry. In this work, a multigenerational and transgenerational analysis of thermal manipulation during embryogenesis was performed to uncover the long-term effects of such procedure.
View Article and Find Full Text PDFThe embryonic thermal programming (TM) in birds has been shown to impact several physiological parameters such as resistance to thermal stress, muscle growth or immunity. In mule ducks, it has recently been shown that TM can induce metabolic programming resulting in increased liver weight and fat storage after overfeeding. However, a decrease in hatchability and quality was also observed, suggesting that this technique needs to be optimized.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
January 2023
An increase in egg incubation temperature was previously shown to enhance the metabolism of mule ducks and increase liver fattening after overfeeding, through a metabolic programming mechanism. Here, we examined whether fasting (F) followed by refeeding (RF) in 11-wk-old mule ducks could become an accelerated model to study the mechanisms of metabolic programming following embryonic thermal manipulation. This study investigated the hepatic response of mule ducks subjected to 23 h of fasting and 1 h of refeeding, in control or thermally programmed animals (with an increase of 1°C, 16 h per day from to of embryogenesis).
View Article and Find Full Text PDFEarly experiences, including prenatal environment, are known to influence a wide variety of mechanisms involved in the phenotype elaboration. We investigated the effect of the addition of endocrine disruptors or of a methyltransferase inhibitor during the embryonic development of quails from different genetic backgrounds (four different quail lines) on their growth and egg-laying performances. Fifty-four pairs of parents per line were used and fertilised eggs from each pair were randomly divided into five groups: a control group without any injection, an injected control group treated by injection into the egg of sesame oil, and three groups treated by injection of Genistein, Bisphenol A or 5-Aza-2'-deoxycytidine.
View Article and Find Full Text PDF