Plasmodesmata are membranous nanopores that connect the cytoplasm of adjacent plant cells and enable the cell-to-cell trafficking of nutrients, macromolecules, as well as invading viruses. Plasmodesmata play fundamental roles in the regulation of intercellular communication, contributing to plant development, environmental responses, and interactions with viral pathogens. Discovering plasmodesmal localization of plant or viral proteins could provide useful functional information about the protein and is important for understanding the mechanisms of plant-virus interactions.
View Article and Find Full Text PDFTransgenic expression of proteins in plants is central to research and biotechnology, and, often, it is desirable to obtain this expression without altering the nuclear or plastid genomes. Thus, expression vectors based on plant viruses that infect multiple cells are useful; furthermore, they are also advantageous for studies of the life cycle of the virus itself. Here, we report the development of an expression vector based on a (TVCV), a tobamovirus known to easily infect two model plants, , and .
View Article and Find Full Text PDFHistone ubiquitylation/deubiquitylation plays a major role in the epigenetic regulation of gene expression. In plants, OTLD1, a member of the ovarian tumor (OTU) deubiquitinase family, deubiquitylates histone 2B and represses the expression of genes involved in growth, cell expansion, and hormone signaling. OTLD1 lacks the intrinsic ability to bind DNA.
View Article and Find Full Text PDFFunctional compensation in response to gene dysfunction is a fascinating phenomenon that allows mutated viruses to regain the capabilities of their wild-type parental strains. In this study, we isolated mutants of tobacco mosaic virus capable of CP-independent systemic movement. These gain-of-function mutants lacked the 16 C-terminal amino acids of the movement protein (MP).
View Article and Find Full Text PDF