DNA damage-induced senescence is initially sustained by p53. Senescent cells produce a senescence-associated secretory phenotype (SASP) that impacts the aging microenvironment, often promoting cell transformation. Employing normal non-tumorous human colon cells (hNCC) derived from surgical biopsies and three-dimensional human intestinal organoids, we show that local non-pituitary growth hormone (npGH) induced in senescent cells is a SASP component acting to suppress p53.
View Article and Find Full Text PDFDNA damage repair (DDR) is mediated by phosphorylating effectors ATM kinase, CHK2, p53, and γH2AX. We showed earlier that GH suppresses DDR by suppressing pATM, resulting in DNA damage accumulation. Here, we show GH acting through GH receptor (GHR) inducing wild-type p53-inducible phosphatase 1 (WIP1), which dephosphorylated ATM and its effectors in normal human colon cells and three-dimensional human intestinal organoids.
View Article and Find Full Text PDFNon-pituitary growth hormone (npGH) expression is well established in extrapituitary tissues, but an understanding of the physiological role of npGH remains rather limited. Pro-tumorigenic npGH impacting the tumor microenvironment has been reviewed. We focus here on autocrine/paracrine npGH effects in non-tumorous tissues and discuss its mechanisms of action in the normal tissue microenvironment.
View Article and Find Full Text PDFOver the past two decades, interest in the role of the somatotroph growth hormone/insulin-like growth factor (GH/IGF1) axis in multiple aspects of physiology and pathology has grown exponentially [...
View Article and Find Full Text PDFMicroenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation.
View Article and Find Full Text PDF