Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction.
View Article and Find Full Text PDFIn living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds.
View Article and Find Full Text PDFNew 4-generation synchrotron sources, with their increased brilliance, promise to greatly improve the performances of coherent X-ray microscopy. This perspective is of major interest for crystal microscopy, which aims at revealing the 3D crystalline structure of matter at the nanoscale, an approach strongly limited by the available coherent flux. Our results, based on Bragg ptychography experiments performed at the first 4-generation synchrotron source, demonstrate the possibility of retrieving a high-quality image of the crystalline sample, with unprecedented quality.
View Article and Find Full Text PDFBiomineralization integrates complex physical and chemical processes bio-controlled by the living organisms through ionic concentration regulation and organic molecules production. It allows tuning the structural, optical and mechanical properties of hard tissues during ambient-condition crystallisation, motivating a deeper understanding of the underlying processes. By combining state-of-the-art optical and X-ray microscopy methods, we investigated early-mineralized calcareous units from two bivalve species, Pinctada margaritifera and Pinna nobilis, revealing chemical and crystallographic structural insights.
View Article and Find Full Text PDFSmall ion-irradiation-induced defects can dramatically alter material properties and speed up degradation. Unfortunately, most of the defects irradiation creates are below the visibility limit of state-of-the-art microscopy. As such, our understanding of their impact is largely based on simulations with major unknowns.
View Article and Find Full Text PDF