Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines.
View Article and Find Full Text PDFMicroneedles (MNs) are a prospective system in cancer immunotherapy to overcome barriers regarding proper antigen delivery and presentation. This study aims at identifying the potential of MNs for the delivery of Peptide-coated Conditionally Replicating Adenoviruses (PeptiCRAd), whereby peptides enhance the immunogenic properties of adenoviruses presenting tumor associated antigens. The combination of PeptiCRAd with MNs containing polyvinylpyrrolidone and sucrose was tested for the preservation of structure, induction of immune response, and tumor eradication.
View Article and Find Full Text PDFCancer immunotherapy is focused on stimulating the immune system against cancer cells by exploiting immune checkpoint mechanisms. PD-1/PD-L1 is one of the most known immune checkpoints due to the widespread upregulation of the Programmed Death Ligand 1 (PD-L1) transmembrane protein in cancer tissues. Accordingly, taking advantage of the ability of oncolytic adenoviruses (OAd) to specifically infect and kill tumor cells over healthy ones, here, we developed a targeted delivery platform based on OAd to selectively deliver in cancer cells an antisense peptide nucleic acid (PNA) targeting the PD-L1 mRNA.
View Article and Find Full Text PDFSelenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment.
View Article and Find Full Text PDF