Snyder-Robinson syndrome (OMIM #309583) is a rare X-linked condition, caused by mutation in the SMS gene (MIM *300105), characterized by a wide spectrum of clinical signs including developmental delay, epilepsy, asthenic habitus, dysmorphism, osteopenia, and renal or genital anomalies. Here we describe two maternal half-brothers who both presented with severe neurodevelopmental delay, seizures, hearing loss, facial dysmorphism, renal and ophthalmologic anomalies, failure to thrive and premature death. A novel p.
View Article and Find Full Text PDFT cell exclusion causes resistance to cancer immunotherapies via immune checkpoint blockade (ICB). Myeloid cells contribute to resistance by expressing signal regulatory protein-α (SIRPα), an inhibitory membrane receptor that interacts with ubiquitous receptor CD47 to control macrophage phagocytosis in the tumor microenvironment. Although CD47/SIRPα-targeting drugs have been assessed in preclinical models, the therapeutic benefit of selectively blocking SIRPα, and not SIRPγ/CD47, in humans remains unknown.
View Article and Find Full Text PDFIn established tumors, tumor-associated macrophages (TAM) orchestrate nonresolving cancer-related inflammation and produce mediators favoring tumor growth, metastasis, and angiogenesis. However, the factors conferring inflammatory and protumor properties on human macrophages remain largely unknown. Most solid tumors have high lactate content.
View Article and Find Full Text PDFSoluble CD95L (s-CD95L) is a chemoattractant for certain lymphocyte subpopulations. We examined whether this ligand is a prognostic marker for high-grade serous ovarian cancer (HGSOC) and whether it is associated with accumulation of immune cells in the tumor. Serum s-CD95L levels in 51 patients with advanced ovarian cancer were tested by ELISA.
View Article and Find Full Text PDFMed Sci (Paris)
April 2019
FDA approval and French ATU for chimeric antigen receptor (CAR) T cells represent an advanced step in the challenge of immunotherapy to cure cancer. The field of adoptive cell therapy emerged with the discovery that tumor-infiltrating-lymphocytes (TIL) can be used to treat melanoma patients. CAR T cells are engineered by gene transfer to express both receptors that target tumor-associated molecules and killing T cell functions.
View Article and Find Full Text PDF