We present an easy-to-use, disposable, thermoplastic microwell chip designed to support screening and high-resolution imaging of single-cell behavior in two- and three-dimensional (2D and 3D) cell cultures. We show that the chip has excellent optical properties and provide simple protocols for efficient long-term cell culture of suspension and adherent cells, the latter grown either as monolayers or as hundreds of single, uniformly sized spheroids. We then demonstrate the applicability of the system for single-cell analysis by correlating the dynamic cytotoxic response of single immune cells grown under different metabolic conditions to their intracellular cytolytic load at the end of the assay.
View Article and Find Full Text PDFThe development of new immunotherapeutic drugs and combinatorial strategies requires the implementation of novel methods to test their efficacy in vitro. Here, we present a series of miniaturized in vitro assays to assess immune cell cytotoxic activity, infiltration, and phenotype in renal carcinoma spheroids with the use of a recently developed multichambered microwell chip. We provide protocols for tumor spheroid formation, NK cell culture, fluorescence labelling and imaging of live or fixed cells directly in the chip together with data analysis.
View Article and Find Full Text PDFImmunotherapy is revolutionizing cancer therapy. The rapid development of new immunotherapeutic strategies to treat solid tumors is posing new challenges for preclinical research, demanding novel methods to test treatments. Such methods should meet specific requirements, such as enabling the evaluation of immune cell responses like cytotoxicity or cytokine release, and infiltration into the tumor microenvironment using cancer models representative of the original disease.
View Article and Find Full Text PDFImmunotherapy for cancer that aims to promote T cell anti-tumor activity has changed current clinical practice, where some previously lethal cancers have now become treatable. However, clinical trials with low response rates have been disappointing for pancreatic ductal adenocarcinoma (PDAC). One suggested explanation is the accumulation of dominantly immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells in the tumor microenvironment (TME).
View Article and Find Full Text PDFHere, we present a methodology based on multiplexed fluorescence screening of two- or three-dimensional cell cultures in a newly designed multichambered microwell chip, allowing direct assessment of drug or immune cell cytotoxic efficacy. We establish a framework for cell culture, formation of tumor spheroids, fluorescence labeling, and imaging of fixed or live cells at various magnifications directly in the chip together with data analysis and interpretation. The methodology is demonstrated by drug cytotoxicity screening using ovarian and non-small cell lung cancer cells and by cellular cytotoxicity screening targeting tumor spheroids of renal carcinoma and ovarian carcinoma with natural killer cells from healthy donors.
View Article and Find Full Text PDF