Background: As in animals, cell-cell communication plays a pivotal role in male-female recognition during plant sexual reproduction. Prelaid peptides secreted from the female reproductive tissues guide pollen tubes towards ovules for fertilization. However, the elaborate mechanisms for this dialogue have remained elusive, particularly from the male perspective.
View Article and Find Full Text PDFMol Cell Proteomics
April 2016
Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation.
View Article and Find Full Text PDFThe journey undertaken by the pollen tube in angiosperms to reach the deeply embedded female gametophyte for fertilization involves persistent guidance by the female gametophyte and accurate perception of the signals by the pollen tube. Several ovule-secreted peptides have been identified. Nevertheless, there are no exact findings on how these signals are perceived by the pollen tube.
View Article and Find Full Text PDFMature pollen represents an extremely resistant quiescent structure surrounded by a tough cell wall. After its hydration on stigma papillary cells, pollen tube growth starts rapidly. Massive metabolic changes are likely to be accompanied by changes in protein phosphorylation.
View Article and Find Full Text PDFThe transition between the quiescent mature and the metabolically active germinating pollen grain most probably involves changes in protein phosphorylation status, since phosphorylation has been implicated in the regulation of many cellular processes. Given that, only a minor proportion of cellular proteins are phosphorylated at any one time, and that phosphorylated and nonphosphorylated forms of many proteins can co-exist within a cell, the identification of phosphoproteins requires some prior enrichment from a crude protein extract. Here, we have used metal oxide/hydroxide affinity chromatography (MOAC) based on an aluminum hydroxide matrix for this purpose, and have generated a population of phosphoprotein candidates from both mature and in vitro activated tobacco pollen grains.
View Article and Find Full Text PDF