Tropospheric ozone (O) concentrations in the Northern Hemisphere have significantly increased since the pre-industrial era, with ongoing growth driven by emissions from industrial, agricultural, and transportation activities, further exacerbated by the warming temperatures and altered atmospheric circulation patterns associated with climate change. This study compared different methodologies for estimating biomass potential losses (BPL) in forests due to elevated O using both concentration-based (AOT40) and flux-based (POD1) metrics. Moreover, to further assess the impact of O on forest health and carbon uptake across the dominant forest types in the Northern Hemisphere, we also compared BPL estimates from dose-response functions with those derived from the process-based model ORCHIDEE.
View Article and Find Full Text PDFPoplars are economically important tree crops and biologically important model plants, which are known to be sensitive to ozone (O). Although surface O is considered as a significant global environmental issue because of its phytotoxicity and greenhouse effect, the knowledge of the dose-response (DR) relationships in poplars for the assessment of O risk is still limited. Hence, this study aimed at collecting data of studies with manipulative O exposures of poplars within FACE (Free Air Concentration Enhancement) and OTC (Open-Top Chamber) facilities.
View Article and Find Full Text PDFForest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries.
View Article and Find Full Text PDFTropospheric ozone (O ) is a phytotoxic air pollutant adversely affecting plant growth. High O exposures are often concurrent with summer drought. The effects of both stresses on plants are complex, and their interactions are not yet well understood.
View Article and Find Full Text PDF