From the beginning of molecular theory, the interplay of chirality and magnetism has intrigued scientists. There is still the question if enantiospecific adsorption of chiral molecules occurs on magnetic surfaces. Enantiomer discrimination was conjectured to arise from chirality-induced spin separation within the molecules and exchange interaction with the substrate's magnetization.
View Article and Find Full Text PDFFrom macroscopic heavy-duty permanent magnets to nanodevices, the precise control of the magnetic properties in rare-earth metals is crucial for many applications used in our daily life. Therefore, a detailed understanding and manipulation of the 4f-metals' magnetic properties are key to further boosting the functionalization and efficiency of future applications. We present a proof-of-concept approach consisting of a dysprosium-iridium surface alloy in which graphene adsorption allows us to tailor its magnetic properties.
View Article and Find Full Text PDFThe moiré of a monolayer of hexagonal boron nitride on Ir(111) is found to be a template for Ir, C, and Au cluster superlattices. Using scanning tunneling microscopy, the cluster structure and epitaxial relation to the substrate, the cluster binding site, the role of defects, as well as the thermal stability of the cluster lattice are investigated. The Ir and C cluster superlattices display a high thermal stability, before they decay by intercalation and Smoluchowski ripening.
View Article and Find Full Text PDFAtomically precise engineering of the position of molecular adsorbates on surfaces of 2D materials is key to their development in applications ranging from catalysis to single-molecule spintronics. Here, stable room-temperature templating of individual molecules with localized electronic states on the surface of a locally reactive 2D material, silicene grown on ZrB , is demonstrated. Using a combination of scanning tunneling microscopy and density functional theory, it is shown that the binding of iron phthalocyanine (FePc) molecules is mediated via the strong chemisorption of the central Fe atom to the sp -like dangling bond of Si atoms in the linear silicene domain boundaries.
View Article and Find Full Text PDF