There is robust evidence implicating inhibitory deficits as a fundamental behavioural phenotype in children with attention-deficit/hyperactivity disorder (ADHD). However, prior studies have not directly investigated the role in which white matter properties within the fronto-basal-ganglia circuit may play in the development of inhibitory control deficits in this group. Combining recent advancements in brain-behavioural modelling, we mapped the development of stop-signal task (SST) performance and fronto-basal-ganglia maturation in a longitudinal sample of children aged 9-14 with and without ADHD.
View Article and Find Full Text PDFObjective: To validate a residual-based cognitive reserve (CR) index optimized for a pediatric sample with attention-deficit/hyperactivity disorder (ADHD).
Method: Participants were = 115 children aged 9.5-13 years at baseline ( = 10.
Intro: Paediatric traumatic brain injury (pTBI) is likely to result in cognitive impairment, specifically executive dysfunction. Evidence of the neuroanatomical correlates of this executive function (EF) impairment is derived from studies that treat morphometry of brain regions as distinct, independent features, rather than as a complex network of interrelationships. Morphometric similarity captures the meso-scale organisation of the cortex as the interrelatedness of multiple macro-architectural features and presents a novel tool with which to investigate the brain post pTBI.
View Article and Find Full Text PDF