Publications by authors named "V Boyartchuk"

The Atlantic salmon, Salmo Salar, is a societally important species of fish, both as a food source and as a component of aquatic biosphere. Its sustainable production is hampered by a wide range of infectious diseases, which is difficult to address due to the lack of in vitro tools to study the disease-host interaction. In this paper, we describe the establishment and characterization of a homogenous Atlantic salmon skin fibroblast (ASSF) cell line.

View Article and Find Full Text PDF

MULIBREY nanism which results from autosomal recessive mutations in TRIM37 impacts skeletal development, leading to growth delay with complications in multiple organs. In this study, we employed a combined proteomics and qPCR screening approach to investigate the molecular alterations in the CHON-002 cell line by comparing CHON-002 wild-type (WT) cells to CHON-002 TRIM37 knockdown (KD) cells. Our proteomic analysis demonstrated that TRIM37 depletion predominantly affects the expression of extracellular matrix proteins (ECM).

View Article and Find Full Text PDF

Human metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied.

View Article and Find Full Text PDF

The innate immune and host-protective responses to viruses, such as the airway pathogen human metapneumovirus (HMPV), depend on interferons (IFNs) that is induced through TANK-binding kinase 1 (TBK1) and IFN regulatory factors (IRFs). The transcription factor IRF1 is important for host resistance against several viruses and has a key role in induction of IFN-λ at mucosal surfaces. In most cell types IRF1 is expressed at very low levels, but its mRNA is rapidly induced when the demand for IRF1 activity arises.

View Article and Find Full Text PDF

ROR family of nuclear receptor transcription factors forms nodes connecting metabolic and inflammatory signaling pathways. The RORα members of the family have intrinsic transcriptional activity and they are involved in both activation and repression of a wide range of genes. The role of RORα in control of inflammation has been extensively studied using animal models but its function in human cells is not as well understood.

View Article and Find Full Text PDF