Publications by authors named "V Bezzon"

Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages.

View Article and Find Full Text PDF

Flubendazole (FBZ) is a poorly water-soluble drug, and different methodologies have been proposed to improve its oral bioavailability. Obtaining the amorphous drug phase is an alternative to improve its water solubility. Several techniques for drug amorphization, such as spray drying, lyophilization, melt quenching, solvent-evaporation, and ball milling, can yield various types of structural disorder and possibly render variations in physicochemical properties.

View Article and Find Full Text PDF

The FDA-approved anthelmintic flubendazole has shown potential to be repositioned to treat cancer and dry macular degeneration; however, its poor water solubility limits its use. Amorphous solid dispersions may overcome this challenge, but the balance of excipients may impact the preparation method and drug release. The purpose of this study was to evaluate the influence of adjuvants and drug loading on the development of an amorphous solid dispersion of flubendazole-copovidone by hot-melt extrusion.

View Article and Find Full Text PDF

The levitation of samples in an acoustic field has been of interest in the preparation and study of amorphous solid dispersions (ASD). Here, niclosamide-polymer solutions were levitated in a multi-emitter single-axis acoustic levitator and analyzed for 10 min at a High-resolution synchrotron X-ray powder diffraction beamline. This assembly enabled high-quality and fast time-resolved measurements with microliter sample size and measurement of solvent evaporation and recrystallization of niclosamide (NCL).

View Article and Find Full Text PDF

We use X-ray pair distribution function (PDF) analysis applied to high-energy synchrotron X-ray powder diffraction data to evaluate the amorphous solid dispersions interactions and their aging stability. The obtained systems are based on hydroxypropyl methylcellulose (hypromellose) derivatives and flubendazole (FBZ) drug dispersions prepared using a spray-dryer technique. We carry out stability studies under aging parameters (40 °C/75% relative humidity) to tune the systems' recrystallization.

View Article and Find Full Text PDF